
NAG C Library Function Document

nag_dgeqrf (f08aec)

1 Purpose

nag_dgeqrf (f08aec) computes the QR factorization of a real m by n matrix.

2 Specification

void nag_dgeqrf (Nag_OrderType order, Integer m, Integer n, double a[],
Integer pda, double tau[], NagError *fail)

3 Description

nag_dgeqrf (f08aec) forms the QR factorization of an arbitrary rectangular real m by n matrix. No
pivoting is performed.

If m � n, the factorization is given by:

A ¼ Q
R
0

��
;

where R is an n by n upper triangular matrix and Q is an m by m orthogonal matrix. It is sometimes
more convenient to write the factorization as

A ¼ Q1 Q2 Þð R
0

��
;

which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

A ¼ Q R1 R2 Þð ;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of minðm;nÞ elementary reflectors
(see the f08 Chapter Introduction for details). Functions are provided to work with Q in this representation
(see Section 8).

Note also that for any k < n, the information returned in the first k columns of the array a represents a QR
factorization of the first k columns of the original matrix A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08aec

[NP3645/7] f08aec.1

2: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

3: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: n � 0.

4: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ when
order ¼ Nag ColMajor and at least maxð1; pda�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.

On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q and
the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

5: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:

if order ¼ Nag ColMajor, pda � maxð1;mÞ;
if order ¼ Nag RowMajor, pda � maxð1;nÞ.

6: tau½dim� – double Output

Note: the dimension, dim, of the array tau must be at least maxð1;minðm; nÞÞ.
On exit: further details of the orthogonal matrix Q.

7: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, m ¼ hvaluei.
Constraint: pda � maxð1;mÞ.

f08aec NAG C Library Manual

f08aec.2 [NP3645/7]

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ E, where

kEk2 ¼ Oð�ÞkAk2;

and � is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately 2
3
n2ð3m� nÞ if m � n or 2

3
m2ð3n�mÞ if

m < n.

To form the orthogonal matrix Q this function may be followed by a call to nag_dorgqr (f08afc):

nag_dorgqr (order,m,m,MIN(m,n),&a,pda,tau,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_dgeqrf (f08aec).

When m � n, it is often only the first n columns of Q that are required, and they may be formed by the
call:

nag_dorgqr (order,m,n,n,&a,pda,tau,&fail)

To apply Q to an arbitrary real rectangular matrix C, this function may be followed by a call to
nag_dormqr (f08agc). For example,

nag_dormqr (order,Nag_LeftSide,Nag_Trans,m,p,MIN(m,n),&a,pda,
tau,&c,pdc,&fail)

forms C ¼ QTC, where C is m by p.

To compute a QR factorization with column pivoting, use nag_dgeqpf (f08bec).

The complex analogue of this function is nag_zgeqrf (f08asc).

9 Example

To solve the linear least-squares problem

minimize kAxi � bik2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35

�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13

�0:02 1:03 �1:43 0:50

1
CCCCCCA

0
BBBBBB@

and B ¼

�3:15 2:19
�0:11 �3:64
1:99 0:57

�2:70 8:23
0:26 �6:35
4:50 �1:48

1
CCCCCCA

0
BBBBBB@

:

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08aec

[NP3645/7] f08aec.3

9.1 Program Text

/* nag_dgeqrf (f08aec) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, m, n, nrhs, pda, pdb, tau_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *b=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08aec Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%ld%*[^\n] ", &m, &n, &nrhs);

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = m;

#else
pda = n;
pdb = nrhs;

#endif
tau_len = MIN(m,n);

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, double)) ||

!(b = NAG_ALLOC(m * nrhs, double)) ||
!(tau = NAG_ALLOC(tau_len, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read A and B from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= nrhs; ++j)

Vscanf("%lf", &B(i,j));

f08aec NAG C Library Manual

f08aec.4 [NP3645/7]

}
Vscanf("%*[^\n] ");

/* Compute the QR factorization of A */
f08aec(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute C = (Q**T)*B, storing the result in B */
f08agc(order, Nag_LeftSide, Nag_Trans, m, nrhs, n, a, pda,

tau, b, pdb, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08agc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute least-squares solution by backsubstitution in R*X = C */
f07tec(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs,

a, pda, b, pdb, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07tec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print least-squares solution(s) */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,

"Least-squares solution(s)", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (tau) NAG_FREE(tau);
return exit_status;

}

9.2 Program Data

f08aec Example Program Data
6 4 2 :Values of M, N and NRHS

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A
-3.15 2.19
-0.11 -3.64
1.99 0.57

-2.70 8.23
0.26 -6.35
4.50 -1.48 :End of matrix B

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08aec

[NP3645/7] f08aec.5

9.3 Program Results

f08aec Example Program Results

Least-squares solution(s)
1 2

1 1.5146 -1.5838
2 1.8621 0.5536
3 -1.4467 1.3491
4 0.0396 2.9600

f08aec NAG C Library Manual

f08aec.6 (last) [NP3645/7]

	f08aec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

